

CURSO EIC PUCV BIM (SD) STRUCTURAL DESIGN

INICIO AGOSTO 2019

40 horas | Presencial Desde el 23/Agosto al 28/Septiembre de 2019 Calendario de clases:

CLASE	MES	HORAS	HORA INICIO	HORA TÉRMINO
1	viernes, agosto 23, 2019	3,5	18:30	22:00
2	sábado, agosto 24, 2019	8	9:00	18:00
3	viernes, agosto 30, 2019	3,5	18:30	22:00
4	sábado, agosto 31, 2019	4,5	9:00	13:30
5	viernes, septiembre 13, 2019	3,5	18:30	22:00
6	sábado, septiembre 14, 2019	8	9:00	18:00
7	viernes, septiembre 27, 2019	3,5	18:30	22:00
8	sábado, septiembre 28, 2019	5,5	9:00	14:30

"En este curso profundizarás en el uso de BIM para el análisis, diseño y documentado de proyectos de edificación en hormigón armado y acero. Así, podrás aprender como el BIM se incorpora a la ingeniería estructura, optimizando los procesos de diseño y documentado"

JUAN CARLOS VIELMA Director del Programa

DESCRIPCIÓN GENERAL

Este programa entrega los conocimientos de BIM enfocados en la modelación avanzada de estructuras, permitiéndoles modelar, analizar y diseñar elementos estructurales. edificaciones de hormigón armado refuerzo) y (incluyendo acero acero, trabajando en entornos de interoperabilidad y flujos bidireccionales entre programas de cálculo y modelado. Los conocimientos entregados en este programa están alineados con los requerimientos del Plan BIM chileno.

OBJETIVOS DE APRENDIZAJE

Al término del curso, los profesionales serán competentes para:

- Desarrollar modelos estructurales en un programa BIM, considerando modelado geométrico, de acero de refuerzo y elementos de acero.
- Generar el modelado analítico de estructuras de acero y hormigón armado en programa BIM de análisis estructuras, analizando y diseñando estructuras de acuerdo a la normativa vigente en Chile.
- Desarrollar flujos de trabajo bidireccionales en la fase de diseño de obras de edificación, mediante interoperabilidad entre programas de modelado y análisis de estructuras.
- Generar tablas de planificación y cubicación de elementos estructurales en entornos BIM.
- Generar planos de documentado avanzado de estructuras.

CONTENIDOS

Unidad 1 (20 horas)

Análisis estructural e interoperabilidad.

Unidad 2 (20 horas)

Modelo analítico, armado estructural y documentado avanzado.

CONTENIDOS

Unidad 1 | Análisis estructural e interoperabilidad

- Interfaz general de Robot Structural Analysis: formatos, unidades, plantas, líneas de construcción, definición de materiales y secciones.
- Colocación de elementos: columnas, vigas, creación de espesores, cimentaciones, losas y muros.
- Creación de modelo analítico: grupos, apoyos, casos de carga, espectros sísmicos, aplicaciones y combinaciones de cargas, mallado y análisis.
- Diseño de acero: modelador de galpones, tipologías, grupos de diseño, dimensionamiento de grupos, verificaciones, conexiones y diseño. Generador de cargas eólicas.
- Diseño de hormigón armado: modelado, fundaciones y acero de refuerzo.
- Interoperabilidad con Revit.

CONTENIDOS

Unidad 2 | Modelo analítico, armado estructural y documentado avanzado.

- Configuración y verificación del modelo analítico en revit.
- Tipos y combinaciones de carga. Colocación de cargas y apoyos.
- Compatibilidad con programas de cálculo estructural.
- Armado estructural de: fundaciones, muros, vigas, pilares, losas.
- Uso de Autodesk revit extensions: armado automático y modelado automático de estructuras tipo.
- Documentado avanzado de planos: detalles constructivos, anotaciones, entre otras.
- Visualización de resultados del análisis estructural.
- Tablas de planificación y cubicaciones avanzado.

PROFESOR

JUEAN CARLOS VIELMA

Ingeniero Civil de la Universidad Centroccidental Lisandro Alvarado, MSc en ingeniería estructural de la Universidad de Los Andes (Venezuela) y PhD en dinámica estructural e ingeniería sísmica por la Universidad Politécnica de Cataluña. Es investigador en el área de vulnerabilidad sísmica y métodos numéricos para análisis no lineal. Pionero en el uso de tecnologías BIM para el diseño y análisis de estructuras. Académico de la Escuela de Ingeniería Civil de la PUCV en estructuras, ingeniería sísmica y tecnología.

INFORMACIONES

Duración/Fechas

40 horas / Desde el 23/Agosto al 28/Septiembre de 2019

Modalidad/Tipo

Presencial / Curso

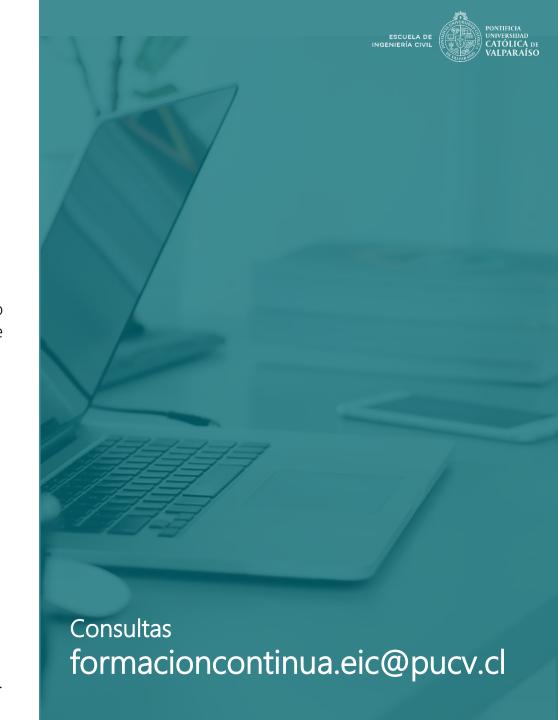
Requisitos

Acreditar haber finalizado una carrera profesional de 8 o más semestres. Manejo de Autodesk Revit structure (básico).

Lugar de realización

Facultad de Ingeniería PUCV (Valparaíso)

Valor


\$600.000

Formas de pago:

 Pago web con tarjeta de débito o crédito (en cuotas según condiciones de cada Banco).

15% de descuento Alumni PUCV. 10% de descuento grupos de empresa.

*Dictación sujeta a un mínimo de 10 alumnos.

BIM (SD) STRUCTURAL DESIGN

eic.pucv.cl formacioncontinua.eic@pucv.cl